• Image Slideshow
    Here we show that microscale 3D thermoelectric architectures can be fabricated through the direct writing of particle-based thermoelectric inks... the characteristics of (Bi,Sb)2(Te,Se)3-based particle inks are engineered to create colloidal inks with high viscoelasticity and without organic binders, and the inks are directly written into complex architectures... More Info
  • Image Slideshow
    Herein, we propose the design of cellular thermoelectric architectures for efficient and durable power generation, realized by the extrusion-based 3D printing process... We design the optimum aspect ratio of a cuboid thermoelectric leg to maximize the power output and extend this design to the mechanically stiff cellular architectures... More Info
  • Image Slideshow
    Herein, we demonstrate that doping‐induced surface charges of PbTe particles significantly improve the viscoelasticities of the inks without additives, enabling precise shape and dimension engineering of 3D bulk PbTe materials. Moreover, these impurity‐free PbTe inks allow efficient sintering of the 3D‐printed TE materials... More Info
  • Image Slideshow
    Here, we present the intrinsically stretchable, wafer‐scale Ag2S thin films fabricated by a low‐cost and scalable solution process. The fabricated thin film was demonstrated to exhibit the intrinsic mechanical stretchability of the tensile strain of 14.9%. Moreover, we fabricated the RRAM device with a wrinkled Ag2S thin film... More Info
Previous Next

Nanomaterials Science and Engineering Lab (NSE)

The NSE focus on the development of novel architectured materials in multi-dimensions through programmed assembly or printing of tailored nanoscale building blocks. To this end, we study the chemical strategies to control over physicochemical properties of individual building blocks as well as their many-body interactions. Moreover, we develop new processing to build up designed architectures from nano- or micro-building blocks. Ultimately, we explore the application areas of architectured materials in multiple length scales as electronic and energy materials.